

MOBILE LIDAR TECHNOLOGIES:

A user's perspective and applications

MOBILE LIDAR APPLICATIONS TO INFRASTRUCTURE PROJECTS

Randy Ortega, PSM

Bayamón, PR & Florida, USA

GEOSPATIAL - THE PACE OF INNOVATION

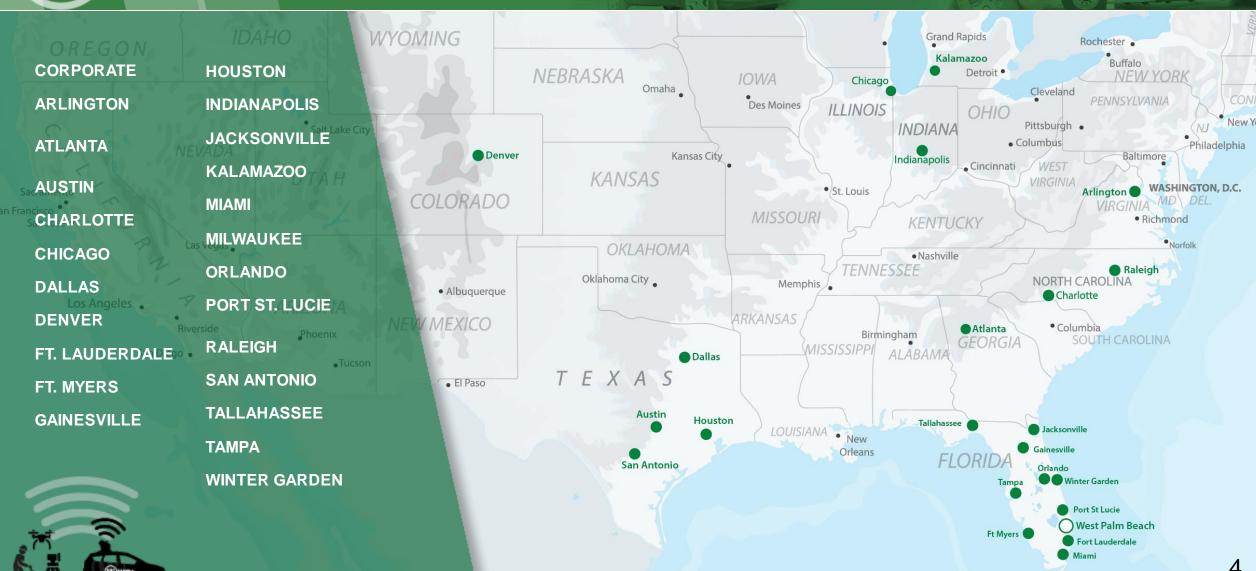
Randy Ortega, PSM
Project Manager

EDUCATION

- BS in Land Surveying from University of Puerto Rico at Mayaguez
- BS in Civil Engineering from University of Puerto Rico at Mayaguez

PROFESSIONAL LICENSES

- Professional Surveying License in Puerto Rico
- Professional Surveyor & Mapper in Florida


EXPERIENCE

- 1 year as Field Survey crew chief in Arecibo Observatory
- 3 years Survey Crew Chief/Survey Technician in Texas
 - Construction Layout
 - Topographic & Boundary Surveys
- 4 years as Survey Technician/Field Crew Supervisor in Florida
- 3 years as Professional Surveyor in Florida with WGI

NATIONAL FIRM - LOCAL PRESENCE

WGI'S GEOSPATIAL DIVISION - THE PACE OF INNOVATION

TERRESTRIAL STATIC LIDAR MOBILE LIDAR w/TopoDOT MOBILE LIDAR

2005

2015 4,600 Corridor Miles

TERRESTRIAL

TERRESTRIAL (BACKPACK) 2017

AUTONOMOUS SURFACE VESSEL 2018

AERIAL UAV LiDAR 2018

MULTI-PLATFORM LiDAR 2019

AERIAL LIDAR 2022

- TYPES OF MOBILE LIDAR, SENSORS, AND USES
- INDUSTRY STANDARDS TRANSPORTATION PROJECTS
- CONTROL POINTS & TARGETS LAYOUTS
- DATA PROCESSING & EXTRACTION WITH TOPODOT
- APPLICATIONS

LIDAR is a surveying technology that measures distance by illuminating a target with a laser and analyzing the reflected light.

LiDAR is not photography or photogrammetry.

Collection of hundreds of thousands or millions of points per second.

Accuracy and precision from several meters to less than one centimeter. "You're only as good as your control"

Coverage areas that can include hundreds of square miles, dozens or hundreds or roadway miles, or one specific site.

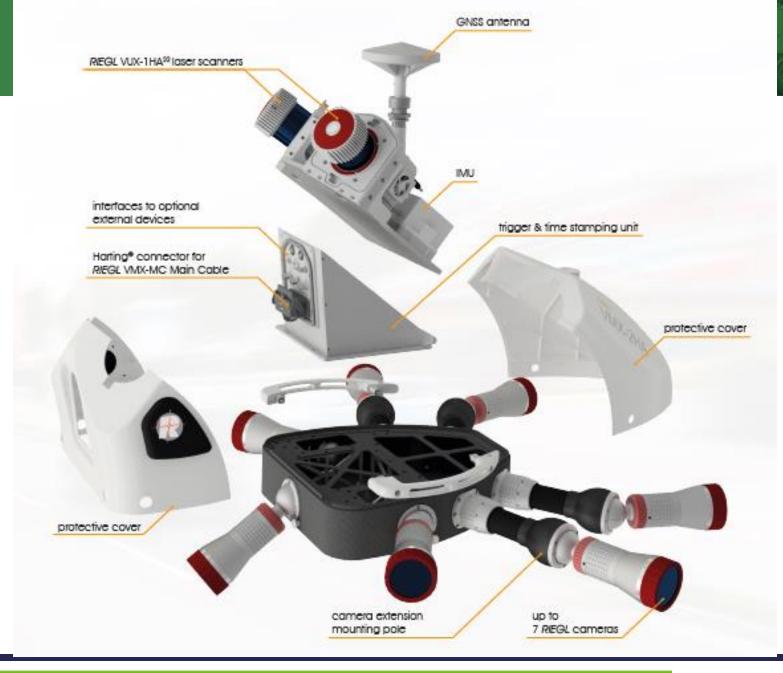
Mobile LiDAR Sensors in Motion

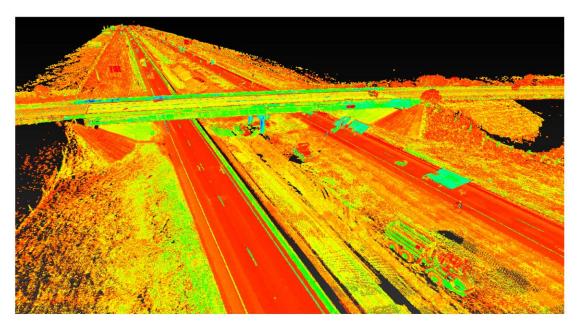
TYPICAL SYSTEM AND COMPONENTS

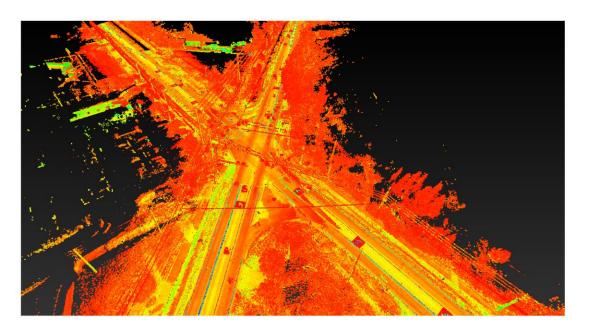
- Laser Measures relative distances by emitting a pulse of light and measuring the speed of its return. Common types of lasers are Time of Flight (ToF) and Phase-shift. Phase difference technique has a medium range, high accuracy, and is ultra-fast, whereas the time-of-flight technique has a longer range but is slightly slower and has slightly less accuracy
- GNSS Receiver- Global Navigation Satellite System. Common GNSS are GPS, GLONASS, Galileo & Beidou (Chinese for big dipper "buy-do") Uses satellite constellations to provide positioning
- IMU Inertial Measurement Units. Captures data about movement such as attitude (pitch, roll, yaw) and velocity with gyroscopes and accelerometers.
- **DMI Distance Measuring Instrument** Wheel pulse transducer. For detecting wheel rotation to calculate wheel speed, distance traveled, and vehicle speed.
- Cameras Planar and Spherical. Used to colorize point cloud as well as provide photographic site inventory and SLAM positioning.
- SLAM Simultaneous localization and mapping. Algorithms utilizing sensor data (LiDAR & cameras) to compute positioning

PEGASUS MOBILE MAPPING SYSTEM

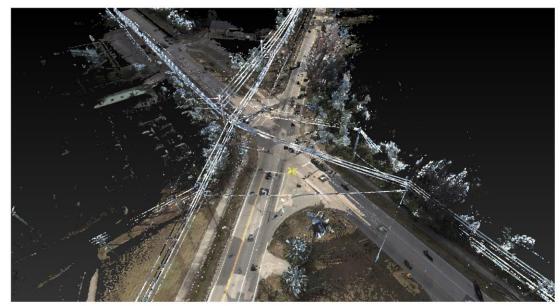
PEGASUS - MIXED APPLICATION

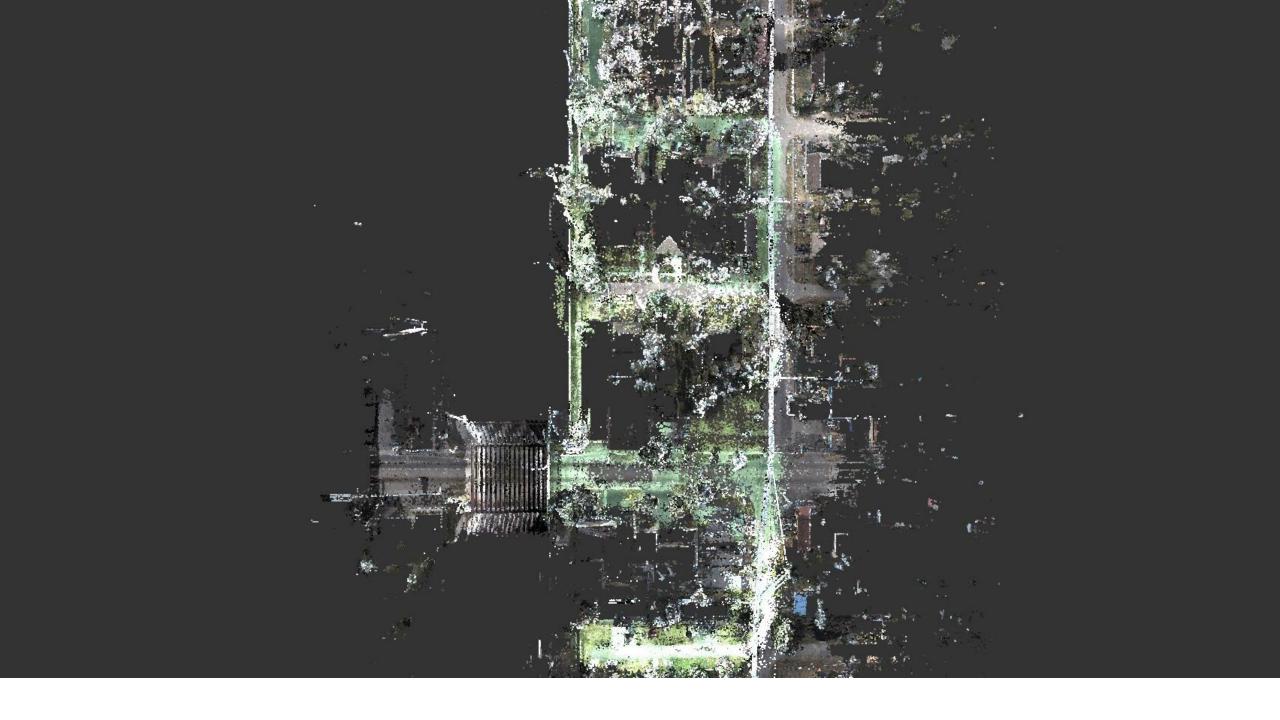


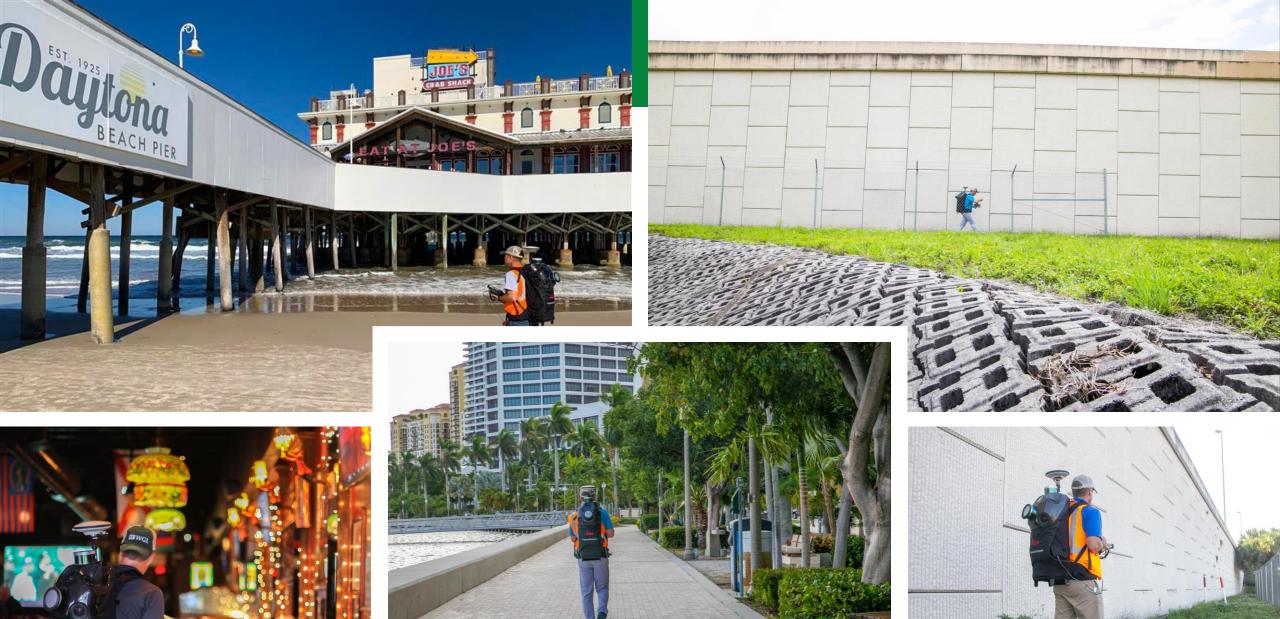

- DUAL SCANNER THAT PRODUCES 3.6M POINTS PER SECOND AT HIGHWAY SPEEDS
- · HIGH PERFORMANCE INS/GNSS UNIT
- HOUSES UP TO 9 OPTIONAL CAMERAS
- IMPROVED FILTERS FOR NOISE REDUCTION.
- · ACCURACY/PRECISION: ~3MM-5MM

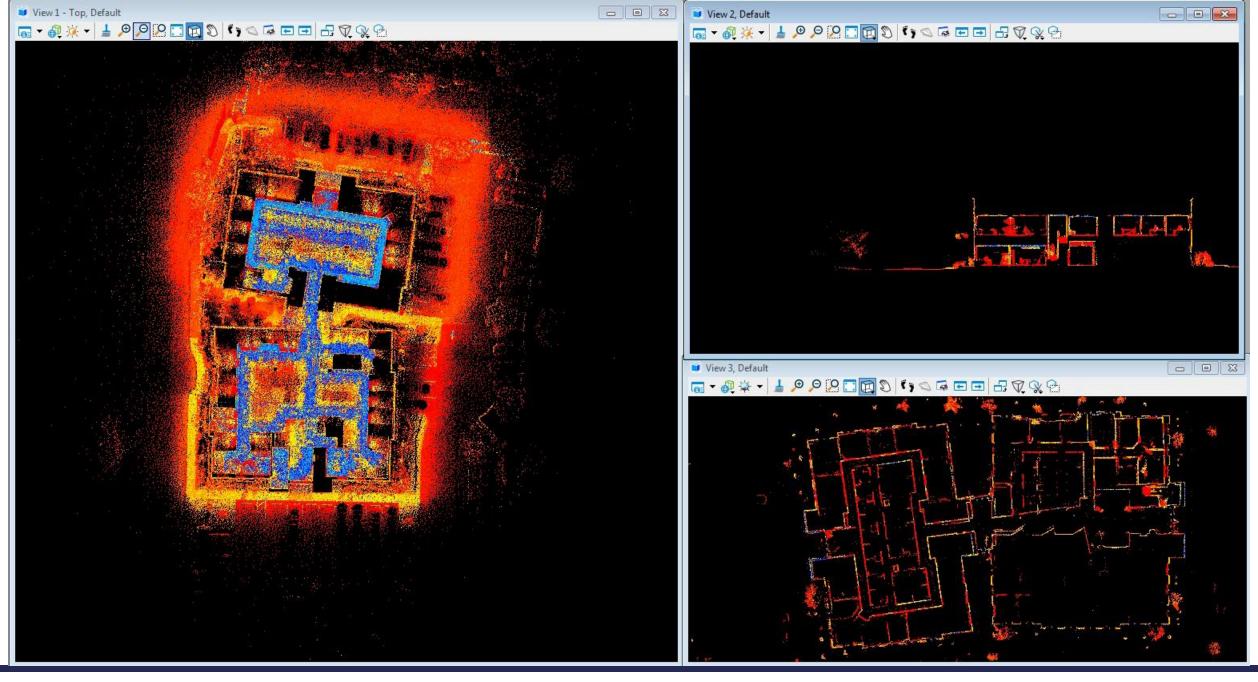


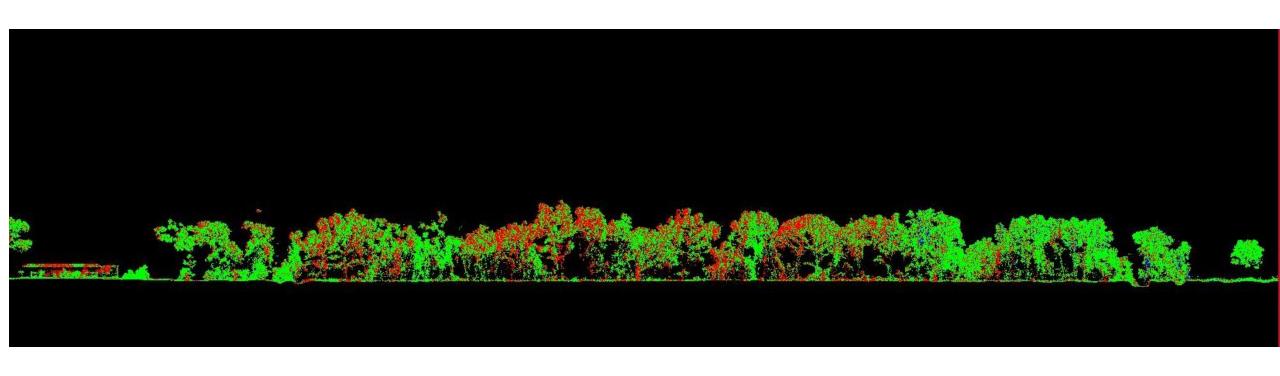
RIEGL VMX-2HA



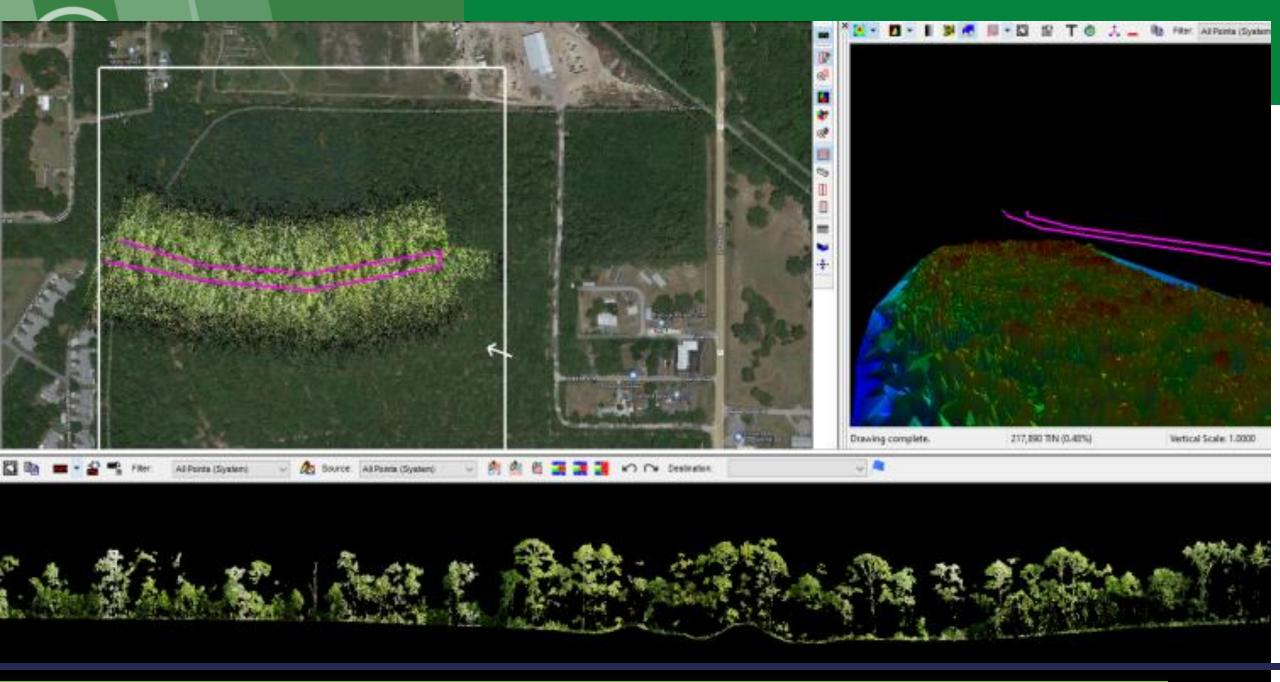


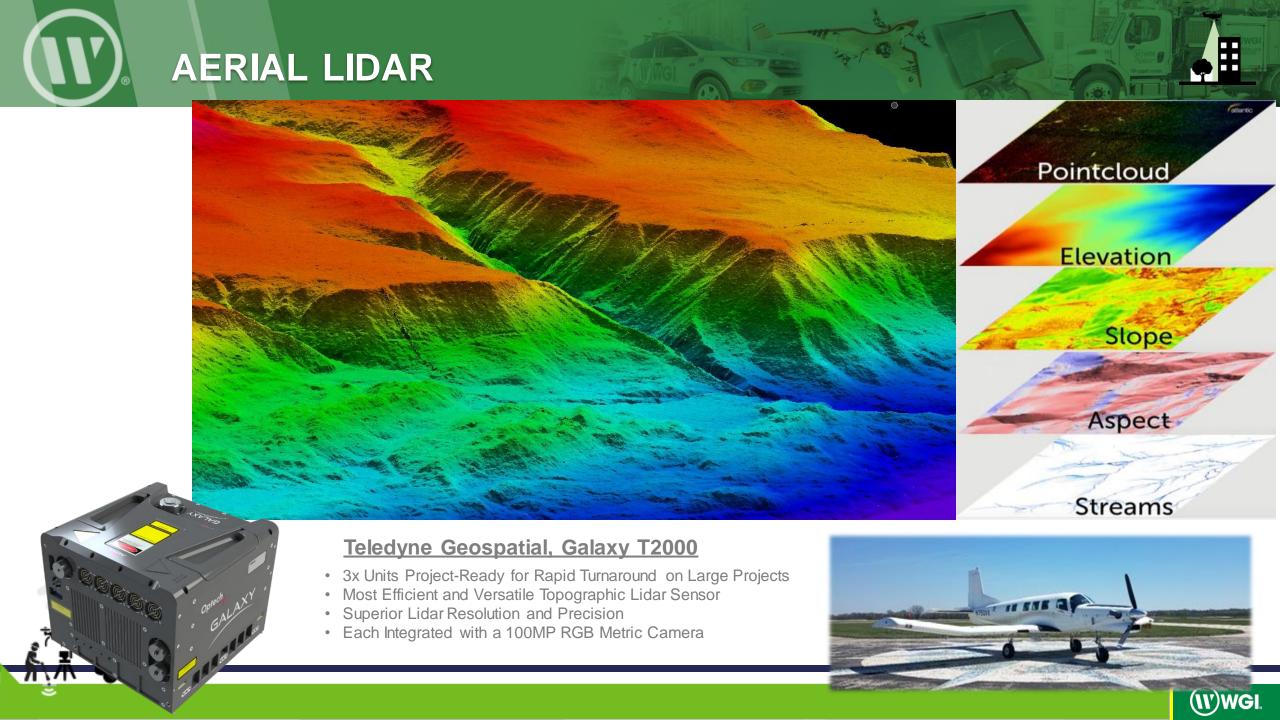




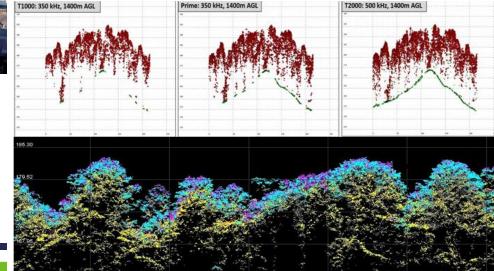

AERIAL LIDAR (UAVs)

- Fixed wing aircraft or helicopter mounted; downward facing configuration
- Collection of millions of points per second
- Utilizes GPS positioning systems, inertial measurement, and targeting if precise collection is required
- Ideal for large coverage areas and remote areas
- Riegl Sensor with Sound pulse to penetrate layers of vegetation
- Raw Accuracy of 0.10' 0.25' (+/- 3cm 6cm)





SPECIALIZED AERIAL LIDAR



Teledyne Geospatial, G2 Sensor System

- Dual Laser Configuration
- Unprecedented Pulse Density and Spacing
- Helicopter & UAV Density at Fixed-Wing Cost & Scale
- Semi-Oblique Pitch Angle for Vertical Feature Capture

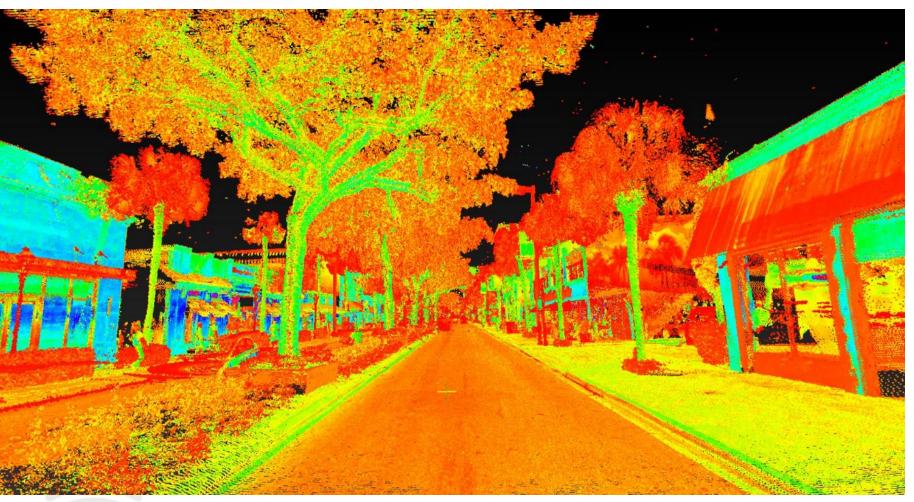
HIGH-RESOLUTION INTERSTATE TEST: 1565 – AERIAL LIDAR RESULTS NUMERIC

Lidar Pulse Stats

NOMINAL PULSE DENSITY	AGGREGATE POINT DENSITY (90% OF 1M SAMPLES)	POINT DENSITY - MODE	BEAM FOOTPRINT DIAMETER, (MEAN ELEV - NADIR)	NOMINAL PULSE SPACING	AGGREGATE NOMINAL PULSE SPACING
70.4 pls/m ²	244.4 pts/m ²	244.1 pls/m²	6.1" (1/e²), 4.3" (1/e)	11.9 cm - 4.7"	6.4cm - 2.5"

Lidar Accuracy and Precision Stats

CONTROL PANEL SAMPLE SIZE	DZ TO CONTROL (MIN, MAX)	MEAN DZ TO CONTROL	REALTIVE INTERSWATH DZ	STANDARD DEVIATION INTRASWATH PRECISION – TO CONTROL (1σ) SMOOTH SURFACE REPEATABILITY		ABSOLUTE RMSEZ – 95% CI
110 – Hard Surface	-0.102' +0.098'	+0.015'	90% <0.131'	0.040'	0.14'	0.042' – 0.082'


Efficiency and Image Stats

AOI SIZE (AREA, LENGTH)	LIDAR BUFFER WIDTH OFF AOI	FLIGHT LINES	TIME OF ACQUISITION (INCLUDES TURNS, NO TRANSIT)	CORRIDOR LINE EFFICIENCY	IMAGE GSD (MIN, MAX)	MEAN IMAGE GSD
0.45mi², 4.3mi	+/-700'	5 + 1 Cross	29min	8.9 corridor miles / hr.	1.71" - 1.77"	1.75" / pix.

LAS OLAS BOULEVARD – FORT LAUDERDALE

LAS OLAS BOULEVARD DESIGNSURVEY - Broward County, Florida Design Survey w/TML, R/W Control Survey, Drainage, and SUE

ACCURACY STANDARDS & GUIDELINES

- FDOT Surveying and Mapping Handbook Version March 29, 2019
- California Department of Transportation (CALTRANS) Survey Manual 2011
- National Cooperative Highway Research Program (NCHRP) Report 748
- Federal Geographic Data Committee (FGDC) Part 3: National Standard for Spatial Data **Accuracy**

FDOT SURVEYING AND MAPPING HANDBOOK

38.1. MINIMUM TML SYSTEM SENSOR COMPONENTS

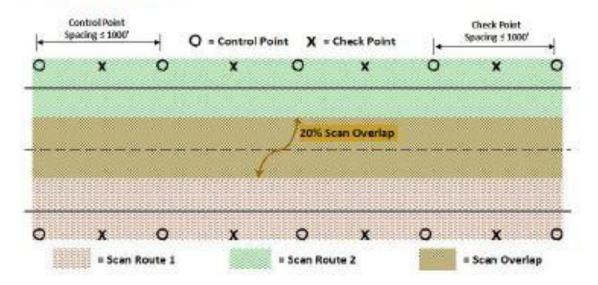
- LiDAR sensor
 - Follow OSHA Regulation 1926.54 and manufacturers' recommendations
 when using any laser equipment. Never stare into the laser beam or view laser
 beams through magnifying optics, such as telescopes or binoculars.
 Additionally, the eye safety of the traveling public and other people should be
 considered at all times and the equipment operated in a way to ensure the eye
 safety of all.

- One or more onboard (roving) GNSS dual frequency receiver(s) capable of RTK data and kinematic data that can be post processed.
- One or more static GNSS dual frequency receiver(s) at base station(s) capable
 of simultaneous collection and storage of RTK data and kinematic data that can
 be post processed.
- An IMU which typically consists of an electronic gyro within a sealed unit mounted securely on or near the primary sensor.
- A DMI typically mounted near vehicle wheel housing. It is used primarily as a supporting measurement that allows for sensor collection at relative distance intervals and can suspend measurements while the vehicle is motionless due to vehicle traffic stops during collection.

The collection rate (epoch) of the TML system sensors must be sufficient to meet project accuracy and point density requirements.

FDOT SURVEYING AND MAPPING HANDBOOK

		TML Survey	
Operation/Specification	Type A	Type B	Type C
TML positional accuracy requirements relative to Project Control Points and Validation Points	V ≤ 0.06 ft	V ≤ 0.10 ft	See Note 5
Maximum post-processed baseline length	5 n	niles	10 miles
Minimum number of common healthy satellites in view for GNSS base stations and mobile scanner	See Notes 1 th	ru 4	AV
Maximum PDOP during TML data acquisition	5		
Allow sufficient time between overlapping collection passes to ensure change in satellite constellation. Recommend at least 3 different satellites in view.	Each Overlapp	ing Pass	
Minimum overlapping coverage between adjacent runs	20%		
Minimum number of project transformation points required	4		
LiDAR point density requirements (see note 8)	(≥ 20 pts/ft²)	(≥ 10 pts/ft²)	See note 9
Recommended maximum spacing for Project Control Point pairs along the project corridor. Project Control Points should be located on each side of scanned roadway.	1000 ft intervals See Note 5	1500 ft intervals See Note 5	See note 5
Recommended maximum Validation Point spacing along the project corridor for QA purposes as safety conditions permit. (See Note 3)	1000 ft intervals See Note 5	1000-2500 ft intervals See Note 5	See Note 5
Minimum NSSDA Horizontal and Vertical Check Points	20	points - see note	7



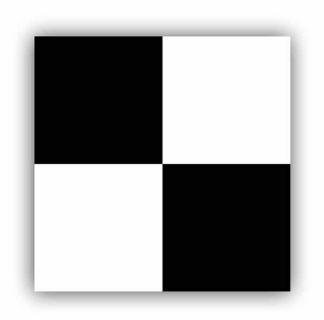
FDOT SURVEYING AND MAPPING HANDBOOK

39.6.1. TYPICAL TML TYPE "A" PROJECT CONTROL AND VALIDATION POINT LAYOUT

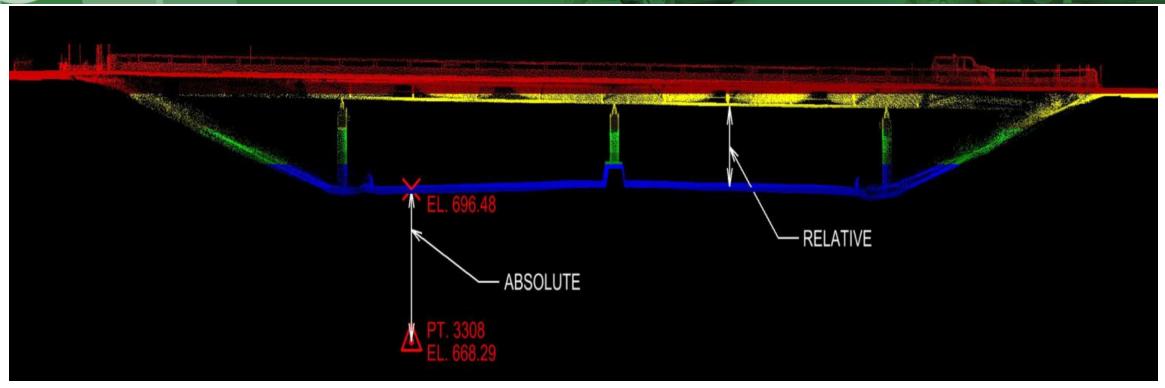
Note: Since all projects are different, these are only recommendations. The Surveyor & Mapper in responsible charge of the TML must choose the appropriate accuracy and geometry of the Project Control Points and Validation Points to insure the TML survey data and products meet or surpass accuracy requirements of the project.

Validation Points may also serve as NSSDA check points to meet the requirements of this section.

However, if critical areas of the point cloud are to be used outside of the locations of the Validation Points, then additional check points will be needed in those areas to meet this requirement.



TYPES OF TARGETS



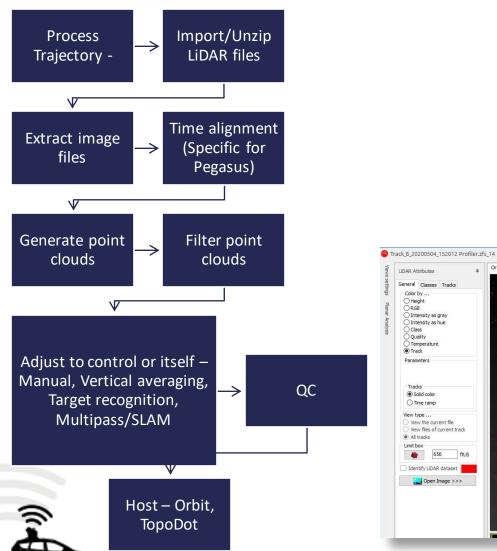
TARGET LAYOUTS

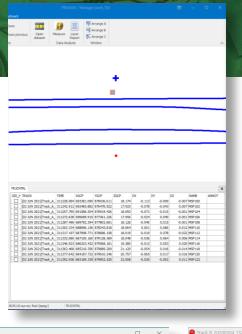
RELATIVE VS. ABSOLUTE POSITION

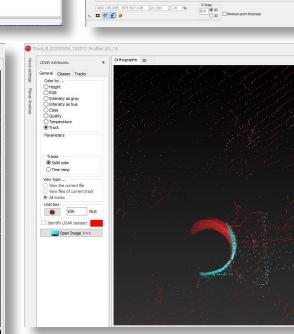
- Absolute Location
 - Point cloud in relation to established coordinate system
- Relative Distance
 - Point to point distance within cloud

LEICA PEGASUS BACKPACK

General Classes Tracks O Height


O Intensity as gray O Intensity as hue Quality O Temperature


Solid color


O Time ramp

Open Image >>>

View type .. View the current file View files of current track

QC – CONTROL POINT REPORT EXAMPLE

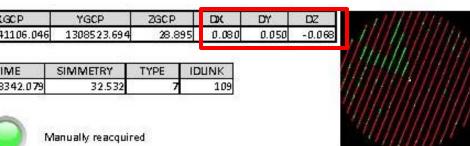
Leica Pegasus:Two Ultimate

Mobile Reality Capture

Name: MSP508	ID: 14	Class: Control Point
Track Data: [05 MAY 2020]	THEA_A_20200505_122 7 18	Profilerzfs_13 12653613gps

XGCP	YGCP	ZGCP	DK	DY	DZ
541879.859	1307881.817	40.876	0.049	0.042	-0.023

TIME	SIMMETRY	TYPE	IDUNK
218357.559	33.119	7	113


Manually reacquired

ID: 15 Name: MSP509 Class: Control Point Track Data: [05 MAY 2020]THEA_A_20200505_122718 Profilerzfs_12 | 12653613 gps

XGCP	YGCP	ZGCP	DX	DY	DZ
541106.046	1308523.694	28.895	0.080	0.050	-0.068

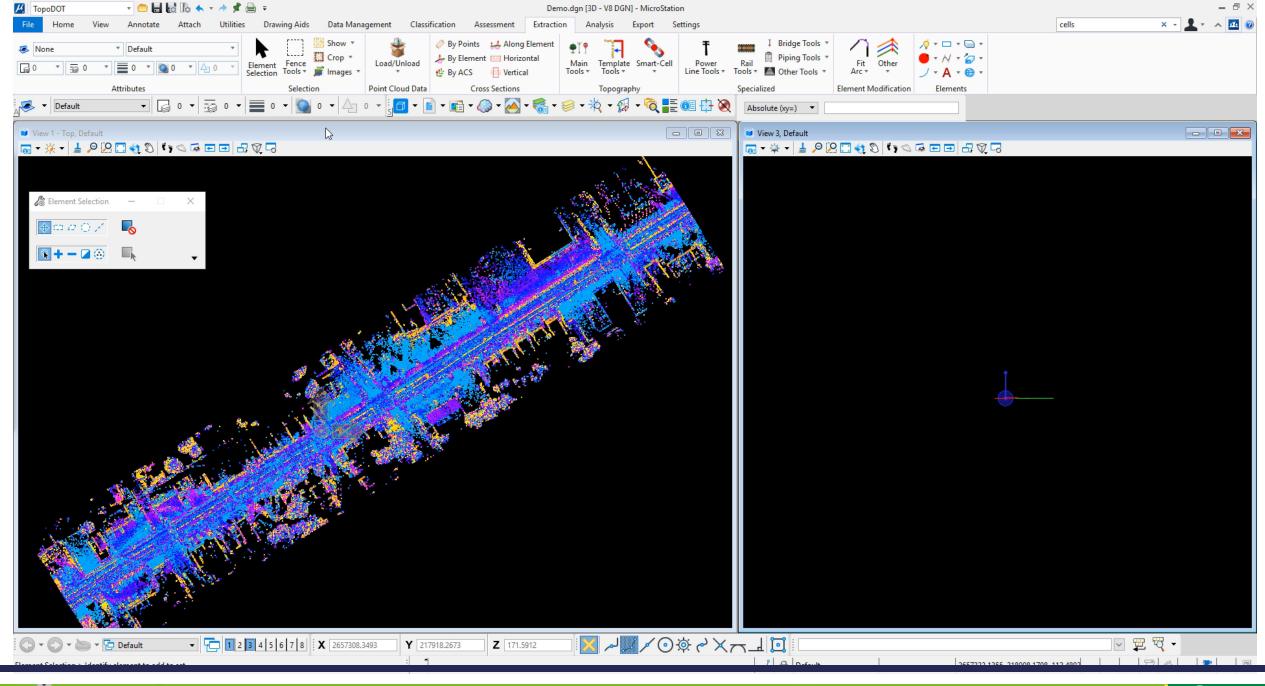
TIME	SIMMETRY	TYPE	IDUNK
218342.079	32.532	7	109

QC - MOBILE LIDAR TARGETS REPORT EXAMPLE

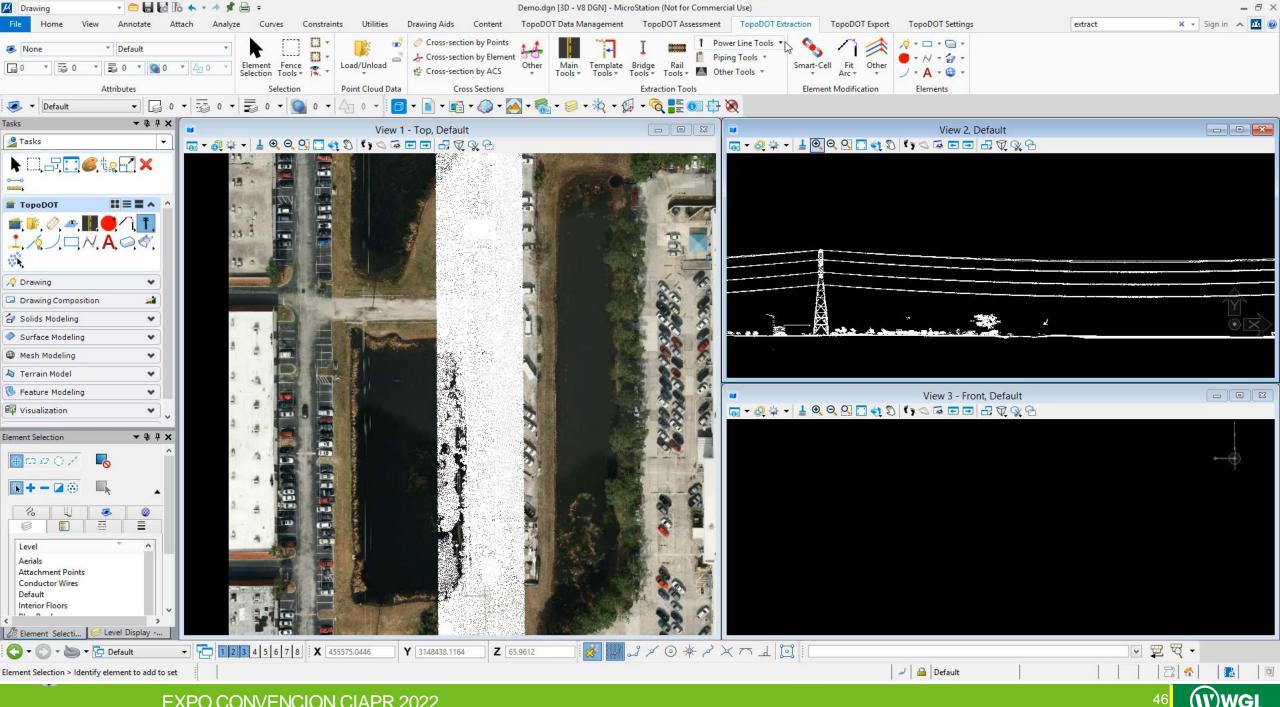
A	В	С	D	E	F	G	Н		J	K	L	М
1 Index	Point	Easting	Northing	Elevation	Abs(Deviation X)		Abs(Deviation Y	Deviation Y	Abs(Deviation Z		Dist XY	Template Name
150 149	MSP601	548585.85	1307096.96	40.136	0.022	0.022	0.007	-0.007	0.001	0.001	0.024	60-
151 150	MSP602	547743.01	1306922.31		0.059		0.021	0.021	0.006	-0.006	0.062	60-
152 151		548598.79	1305181.5		0.047		0.033	-0.033	0.035	-0.035	0.057	60-
153 152		548480.56	1306116.58		0.049		0.018	0.018	0.022	-0.022	0.052	60-
154 168		537392.82	1314479.67		0.007		0.011	0.011	0.01	-0.01	0.013	60-
155 174	MSP627	522611.08	1316082.31	16.64	0.023	-0.023	0.032	-0.032	0.029	-0.029	0.04	60-
156												
157				AVG		-0.0109		-0.0049		-0.0044		
158				RMSE		0.0371		0.0319		0.0124		
159				Within Tolerance (%)		100		100		100		
163		_	,	.,	1	<u> </u>				- · ·· -		
164			eviation 2	X		Deviati	on Y			Deviation Z		
165		13344444444444444444444444444444444444	0			0	_			0		
166		1,14464	b5168 2 4 6	8 10,2		1,141415168	2 4 6 8 10 2		14	145455158 2468	10, 2	
167		13840+2	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	141416	4.	13844	1446	1346 0.05 124 6 8 10 ₁₂₁ 46 136 136 124 126 128 126 126 124 122 122 120 32 34				
168 169	12	34	0.15	20	132		20	12	1340	0.04	#/ /	202
170	130		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	224 26 28 30 32	132 132 130 128 126 124 122 120	0,06-		24	1302			20 22 24 26 28 30 32 32
170	126		0.1	28	126	0.04		24 26 28 30 32	126	0.03		28
171 172	124		◆n5 ◆ t/\$.	30 32	124			30 32	124	0.02		30 32
173	120 118			34 36	120 118	0.735		34 36	120 118	0.00		34 36
174	116			38	116	4		38	116			38
175	114 112			40 42	114 112			40 42	114			40 42
	110		**************************************	1/1	110			44	110	**************************************		44
177	106		(4)	48 50 52 54	106			48	106			48
178	104		//////	50	104			50 52	102	X/////////	HIIK	50
179	100	8 ////////</th <th><i>[[[]]</i></th> <th>54</th> <th>114 112 110 108 106 104 102 100 98</th> <th><u> </u></th> <th>TI </th> <th>44 44 46 48 50 52 54</th> <th>100</th> <th><i>(/////</i></th> <th>THALL)</th> <th>48 50 52 54 56</th>	<i>[[[]]</i>	54	114 112 110 108 106 104 102 100 98	<u> </u>	TI	44 44 46 48 50 52 54	100	<i>(/////</i>	THALL)	48 50 52 54 56
180		9943//////	///////////////////////////////////////	\\\\\\ ₆₅ 0 ⁸	9	9 ₄₃ /////////</th <th>THHH!!!!!!</th> <th></th> <th>964</th> <th>//////</th> <th>(())), 60°</th> <th>98</th>	THHH!!!!!!		964	//////	(())), 60°	98
181		9088604	44111111111111111111111111111111111111	68 ⁶⁶ 4 ⁷²		7'90 ₈₈ 66.4	76666472		3408	36p.4-	566 ⁴	
182		~~4 ₍	328078 76747 ²⁷	U		⁷⁹² 9088684828078 7	67472/000		114 112 110 108 106 104 102 109 109 109 109 109 109 109 109 109 109	⁸⁰⁸⁴ 828078 767472 ⁷⁰	-	
102												

HAWAII SAMPLE BACKPACK DATA

Open your phone camera app and scan the QR Code to access Orbit Demo data



TOPODOT APPLICATIONS


- Asset Management GIS
- Breakline Extraction tool for 3D Topographic surveys
- Detailed Roadway Conditions Report tool
- Cross Slope Analysis tool
- Electric Transmition Locations
- Among Other Applications

DISADVANTAGES

- Buy-in Prices
- File Sizes & Hardware To Process/Host Files
- Software Trained Personnel

ADVANTAGES

- Safety! Safety! Safety!
- Improved Time Field Collections For Time Constrained Projects
- More Data For Less Cost
- Able To Collect Data In Hard-to-reach Places Without An Instrument Setup
- Easier Transitions To GIS Platforms And Asset Management

Randy Ortega, PSM

E-mail: Randy.Ortega@WGInc.com

Phone: 561.268.5672

WEB: WGInc.com

